Down-Regulation of Myogenin Can Reverse Terminal Muscle Cell Differentiation
نویسندگان
چکیده
Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation. Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription factors essential towards the regulation of myogenesis.Our current interest is to investigate whether down-regulation of MRFs in terminally differentiated mouse myotubes can induce reversal of muscle cell differentiation. Results from this work showed that reduction of myogenin levels in terminally differentiated mouse myotubes can reverse their differentiation state. Down-regulation of myogenin in terminally differentiated mouse myotubes induces cellular cleavage into mononucleated cells and cell cycle re-entry, as shown by re-initiation of DNA synthesis and increased cyclin D1 and cyclin E2 levels. Finally, we provide evidence that down-regulation of myogenin causes cell cycle re-entry (via down-regulation of MyoD) and cellularisation through separate pathways. These data reveal the important role of myogenin in maintaining terminal muscle cell differentiation and point to a novel mechanism by which muscle cells could be re-activated through its down-regulation.
منابع مشابه
Twist reverses muscle cell differentiation through transcriptional down-regulation of myogenin
Some higher vertebrates can display unique muscle regenerative abilities through dedifferentiation. Research evidence suggests that induced dedifferentiation can be achieved in mammalian cells. TWIST is a bHLH (basic helix-loop-helix) transcription factor that is expressed during embryonic development and plays critical roles in diverse developmental systems including myogenesis. Several experi...
متن کاملRegulation of heterochromatin remodelling and myogenin expression during muscle differentiation by FAK interaction with MBD2.
Focal adhesion kinase (FAK), a major cell adhesion-activated tyrosine kinase, has an important function in cell adhesion and migration. Here, we report a new signalling of FAK in regulating chromatin remodelling by its interaction with MBD2 (methyl CpG-binding protein 2), underlying FAK regulation of myogenin expression and muscle differentiation. FAK interacts with MBD2 in vitro, in myotubes, ...
متن کاملc-myc inhibition of MyoD and myogenin-initiated myogenic differentiation.
In vertebrate development, a prominent feature of several cell lineages is the coupling of cell cycle regulation with terminal differentiation. We have investigated the basis of this relationship in the skeletal muscle lineage by studying the effects of the proliferation-associated regulator, c-myc, on the differentiation of MyoD-initiated myoblasts. Transient cotransfection assays in NIH 3T3 c...
متن کاملRapid activation and down-regulation of protein kinase C alpha in 12-O-Tetradecanoylphorbol-13-acetate-induced differentiation of human rhabdomyosarcoma cells.
Human rhabdomyosarcoma RD cells express the myogenic regulatory factors MyoD and myogenin but differentiate spontaneously very poorly. Prolonged treatment of RD cells with the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA) induces growth arrest and myogenic differentiation as shown by the accumulation of alpha-actin and myosin light and heavy chains, without affecti...
متن کاملMitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors.
To characterize the regulatory pathways involved in the inhibition of cell differentiation induced by the impairment of mitochondrial activity, we investigated the relationships occurring between organelle activity and myogenesis using an avian myoblast cell line (QM7). The inhibition of mitochondrial translation by chloramphenicol led to a potent block of myoblast differentiation. Carbonyl cya...
متن کامل